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Elastic/plastic indentation hardness and 
indentation fracture toughness: the inclusion 
core model 
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A new model for determining elastic/plastic indentation is presented. This model generalizes 
Johnson's incompressible core model to a compressible material and allows the indentation 
pressure to be transmitted via a misfitted inclusion core beneath the indenter which is sur- 
rounded by a hemispherical plastic zone. The internal stress field inside the core is obtained by 
applying Eshelby's spherical inclusion problem together with Hill's spherical-cavity expansion 
analysis. The plastic deformation considered here exactly ensures compatibility between the 
volume of a material displaced by the indenter and that accommodated by expansion. The 
analysis explains the essential relationships between the dimensions of the indentation and 
plastic zone and the dominant material properties; yield stress, hardness and elastic modulus. 
The solution is extended to evaluate the indentation fracture toughness by taking into account 
the reduced half-space constraint by the image force. 

1. Introduct ion 
Indentation fracture is now established as a simple but 
important technique for determining the fracture 
toughness of ceramics. Its application stems from 
recent analysis of elastic/plastic indentation fracture, 
which is based on the evaluation of internal stress 
(residual stress) resulting from a misfit between the 
plastic zone beneath the indentation and the sur- 
rounding elastic matrix [1-7]. Particularly notable 
progress was developed in a series of works by Lawn, 
Evans and Marshall [1-5]. They calculated the elastic/ 
plastic stress field treating the indentation pressure as 
a pressurized spherical cavity and applying Hill's 
spherical-cavity expansion solution. They offered a 
correlation between fracture toughness and P/a  3/2, 
where P is the indentation load and a the radius of a 
half-penny median crack [8]. However, they did not 
analytically obtain the correlation factor, but they 
semi-empirically determined it by comparing the 
indentation-determined toughness values with the 
conventional ones. Furthermore, it seems that their 
model has a difficulty in the correlation between the 
conventional hardness and the indentation pressure. 
Namely, they assumed that the volume of the cavity is 
equal to the Vickers indentation volume, so that the 
diameter of the spherical cavity is much smaller than 
the indentation diagonal. 

Johnson [9] attempted to account for the influence 
of an indenter angle by allowing the indentation press- 
ure to be transmitted via an incompressible hydrostatic 
core beneath the indenter and replace the cavity in 
Hill's model. Then, Johnson extended Hill's theory to 
obtain the elastic/plastic stress field outside the core 
ensuring compatibility between the volume of the 
material displaced by the indenter and that accom- 
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modated by expansion. However, the analysis gives a 
considerable underestimate for indentation measure- 
ments [9], and the estimate of the plastic zone radius 
vis-g~-vis the core radius is particularly disparate [4]. 
Recently, Tanaka and co-workers [6, 7] proposed a 
new model based on the analogy of the internal spheri- 
cal inclusion problem [10, 11]. The indentation volume 
was assumed to be accommodated by the transform- 
ation of a spherical inclusion beneath the indenter, 
which corresponds to the introduction of dislocations 
in the plastic zone beneath the indentation [7]. The 
theoretical prediction of the indentation toughness 
equation for well-developed cracks agreed excellently 
with the empirical one derived by Antis et al. [3]. 
However, the elastic/plastic stress field outside the 
indented area in the model did not satisfy the yielding 
condition of a material. 

The present approach attempts to generalize John- 
son's model by allowing the indentation pressure to be 
transmitted via a misfitted inclusion beneath the 
indenter (inclusion core model) and by adding a term 
related to the dissipated plastic work in the core. In 
contrast to Johnson's model, the core in this analysis 
is compressible and partially accommodates the volume 
of the material displaced by the indenter. The solution 
is applied to evaluate the correlation factor in the 
indentation fracture toughness equation. This takes 
into account the reduced half-space constraint or the 
image force contribution due to the presence of a free 
surface. 

2. Indentation analysis 
2.1. Basic model 
The procedure is similar to those adopted by Johnson 
[9] and Lawn et al. [2]. Fig. 1 outlines the model. The 
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hemispherical plastic zone just underneath the indenter 
is taken to support the indenter over the characteristic 
contact radius q .  Because of  the constraint of  the 
surrounding elastic material, the plastic deformation 
induces internal stresses and the plastic zone acts as a 
compressible hydrostatic core of  pressure p~. The sur- 
face area of  the core, nc~, is assumed to be equal to 
that of the indented area, 2c 2, where c is half the 
indenter diagonal. Hence c~ - 0.8c. The operation of 
the pressure pt over the core wall creates a hemi- 
spherical plastic zone, radius b, outside the core. The 
latter situation is similar to that for a spherical cavity 
under a pressure p~. Invariance of the indentation 
pressure in hardness measurements requires that the 
plastic zone volume be governed exclusively by the 
indentation volume [9]. It follows from this that the 
indentation volume A V be compensated by the misfit 
induced in the total plastic zone. For a Vickers indenter, 
the included angle 2 0 ( =  136°), 

A V  = 21/2C3COt ~k/3 (1) 

The volume should be shared by the misfit volume in 
the plastic core, A V,, and that in the plastic zone 
outside the core, A V2. 

To evaluate the internal stress field the following 
sequence of hypothetical operations is performed on 
the analogy with the internal spherical inclusion 
problem [10]. (1) Begin with an unstressed elastic half 
space and remove a segment of  material with radius c~ 
(core) from the prospective contact site. (2) Apply an 
average pressure P0 to the prospective contact surface 
of the removed core and plastically deform it to allow 
a uniform expansion of misfit strain, A V/V~, where Vt 
is the volume of the removed core (=  2rrc~/3). Then 
unload the pressure and hold it stress-free. (3) Apply 
a pressure P2 to the walt of the hole in the matrix to 
generate a plastic zone of radius of  b around the hole, 
and relax the pressure. If  A/I2 is the resulting volume 
change, Hill's expanding cavity analysis [8] gives the 
following form (see Appendix 1), 

AV2/V~ = [3Y(1 - v)/El(b/cl) 3 

- [9p2(1 - v)/2E], (2) 

where Y is the yield stress, E is the Young's modulus, 
and v is the Poisson's ratio. The pressure P2 is related 

to the yield stress as 

P2 = (217/3)[1 + 3 In (b/q)] (3) 

(4) Elastically restore the removed core to the radius 
of  the expanded cavity by a hydrostatic compression 
across the outer boundary. Then reinsert the press- 
urized core into the expanded cavity, restoring 
coherence at the interface, and allow the system to 
relax elastically. Applying Eshelby's inclusion prob- 
lem [10, 11], the resulting pressure Pt in the core 
can be related to the irreversible misfitted volume 
AVI(=AV - AV2) as 

p~ = [2E/9(1 -- v)](AV~/V0. (4) 

Hence, the internal stress satisfying the model outlined 
in Fig. 1 is obtained when 

P2 = Pl (5) 

Using this condition and Equations 1 to 4, the plastic 
zone size b can be correlated with the yield stress in a 
functional form, 

Y/E = [cot 0/3 x 21/2~(1 - v)](c/b) 3 (6) 

The problem is the evaluation of  the average press- 
ure P0 at stage 2. This is related to the plastic work 
dissipated to heat in the core and not yet exactly 
solved, but may be written by 

P0 = ~Y (7) 

where e is a material constant. The constant would be 
dependent on the deformation process in the core and 
estimated for the two extreme cases. The upper limit 
would be one, as derived from the case when a 
medium of  depth e~ is pressed by a smooth flat die of  
width 2cl (Hill [8] p. 257). The lower limit would 
correspond to the case of  the expansion of  a plastic 
hemispherical shell with outer radius c~ (Hill [8] p. 99). 
In this case the volume of the inner cavity may be 
equalized to A V. The pressure applied at the inner 
cavity wall is given by 2Yln(cl/d),  where c' is the 
inner radius and equal to 0.45e. Hence the applied 
pressure averaged over the prospective indenter- 
contact surface becomes 2rcc'2Yln(q/c')/rtc~. This 
yields e = 0.36. Therefore, the parameter ~ would lie 
between 0.3 and 1. 

P = ll'C12p 
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Figure 1 Schematic representation of elastic/plastic inden- 
tation. 



The total pressure p is the sum of the residual 
pressure Pt and the pressure required for the plastic 
deformation in the core P0, and it should be balanced 
with the applied load P. This is correlated with the 
conventional Vickers hardness H~, 

H~/sin~O = p = Pl + ~Y- (8) 

Eliminating Y from Equation 8 in use of Equations 3 
to 6, one obtains 

E/H~ = [97r(1 - v)/2 t/z cos ~] 

x (b/c)3/[1 + 3c~/2 + 3 In (b/cO] (9) 

The solution is valid in the region where b ~ c~. This 
condition gives 

E/Hv > 9re(1 - v)21/2(1 + 3~/2)cos ~ (10) 

Eliminating b/c from Equations 3, 6 and 8, one deter- 
mines the total pressure in the core and the hardness 
as a function of the ratio E~ Y, 

p l Y  = H~/Ys in  ~9 = (2/3)[1 + 3c¢/2 + 3 In (b/cO] 

= (2/3){1 + 3~/2 

+ In [Ere 1/2 cot ~b/12(1 - v)Y]} 

( l l )  

Johnson [9] obtained the following relations cor- 
responding to Equations 11 and 6, respectively, 

p / Y  = (2/3)[1 + 3 in (b/c)] (12) 

(E/Y)  c o t ~  = 6(1 - v)(b/c) ~ -  4(1 - 2v) 

(13) 

(although the definition of c in his paper is not dear). 
It is evident that Johnson's model is correct for special 
situations; Equation 12 is coincident with Equation 11 
when the contribution from the dissipative plastic 
work in the core is neglected (~ = 0), and Equation 13 
becomes identical in form to Equation 6 in an extreme 
case of incompressible material (v = 0.5). 

2.2. Stress  in tens i ty  fac tors  
The present analysis calculates the residual term at an 
unloaded state in the case of a well-developed median 
crack of half-penny shape with a radius a. The detailed 
procedures for the calculation of stress intensity factors 
were described in previous papers [6, 12]. The coor- 
dinate system is shown in Fig. 1. It is assumed that the 
crack plane is open i n  the region where a radial location 
r is larger than c~ (c~ < r _< a). The stress intensity 
factor K averaged over the full angular range of the 
crack front can be represented by [12] 

K = 2(a/rt) '/2 Ii. a22({){d{/(1 - ~2)~/2 (14) 

and -ira a,j (r) the image stress component due to the 
presence of a free surface. In correspondence with the 
two stress components, the relevant stress intensity 
factors K ~ and K ~ can be separately computed, 

K = K ~ + /~r~ (16) 

The stress intensity factors vary with the crack open- 
ing location cx. It has been found that the value of K 
becomes maximum when c~ positions within the plastic 
zone outside the core (c~ < c~ < b). Hence, for sim- 
plicity, only the analytical results for the region will be 
represented in the following. 

The spherical cavity solution [8] gives the stress 
distribution in an infinite body on the crack plane 
(X z = 0), 62~, and on the half plane surface (x3 = 0), 
a~: 

a~(r)  = 6~(r)  

5~2(r) = #~3(r) 

ff~(r) = 5"~(r) 

= - P i ,  r < c~ 

= Y[(1/3) - 2 In (b/r)], 

c~ <r<b= = 

= (II/3) (b/r) 3, r > b 

(17) 

Integration of Equation 14 in the use of Equations 3, 
5, 8 and 17 yields the stress intensity factor appropriate 
to an infinite body K °° for well-developed cracks 
(a >> b)as  

K ~ = [P/(~a)3/2](Cx/Cl)2 

x [1 + 3 In (b/cx)]/[1 + 3~/2 + 3 In (b/cO] 

(18) 
-im The image stress 0"22 (r) is provided by the application 

of the traction - ~ ( r )  on the half plane surface. This 
can be determined using the Green's function for the 
semi-infinite body obtained by Mindlin [13] (see also 
[4, 14]). However, the analysis is so complicated that 
the exact integration is actually impossible. Thus the 
relevant image stress is approximately obtained as 
described in Appendix 2. This is given by 

- i m  (r) = I~ ~(o) f ( r /o )d~ /~Q (19) ~722 

where f(r/Q) is a polynominal function of r/o as 
expressed by Equation A7. Substitution of  Equation 
19 into Equation 14 and the integration for the con- 
dition that a >> b results in K im. 

K = [P/(rca)3/2][1 + 3 In (b/c,)] 

x g(cx/cl, b/q)/[1 + 3c~/2 + 3 In (b/cl)], 

(20) 

where g(cx/q,  b /q)  is a polynominal function of c~/cl 
and b/q .  

where ~ = r/a and qx = Cx/a. 5=(r) is the stress 
normal to the prospective crack plane (x: = 0) at a 
radial location r from the crack centre averaged over 
the full angular range. This stress can be separated 
into the components as 

-im 322(r) = ~ ( r )  + 0.=(r), (15) 

where 5q(r) is the stress component in an infinite body 

3. Analytical results and discussion 
3.1.  T h e  h a r d n e s s  
Equation 11 is evaluated varying e in four levels 0, 1/3, 
2/3 and 1 for v = 0.25 and the results are plotted by 
the respective solid lines in Fig. 2 in comparison with 
indentation measurements. The main experimental 
data for metal and polymer are those for Vickers 
pyramid by Marsh [15], and Hirst and Howse [16]. 

1 503  



2 

. . . .  & " 

NRIM ~ ' f ' ~ ' A ~  7 

N l u n e k i e t o [ ~  ~'~" / / / O( 
• . . ' / / / . _ _  

. / / .# . / - - , ,3  ?" - / " / - /  
- / ' i / o - /  / i 

/ - ' o " / /  

4 °U 
/ 

/ O < _ _ p : y  

i I i I i | 

0 10 I 00  I000 
~Y 

Figure 2 Literature data for experimental results on the ratio of the 
indentation pressure to the yield stress against the modulus to yield 
stress ratio for a range of materials. Also shown are the predictions 
in the present analysis for four e-values (v = 0.25). (A) Metal, (O) 
ceramic, (e) polymer. 

The additional ones are from Nishijima for various 
steels [17] and aluminium alloys [18]. The zone indi- 
cated by NRIM Data Sheet is from data of more than 
200 steels [19]. Similarly, the zone of Muneki et al. is 
from data of 19 maraging steels [20]. When the data in 
references [17-20] are plotted, Y is, for convenience, 
taken as the tensile strength for the case of steels and 
the mean of tensile strength and 0.2% proof stress for 
the case of aluminium alloys. The detailed data for 
ceramics [3, 15, 21, 22] are shown in Table I. Usually 
the yield stress of ceramics is not available for bulk 
specimens. Hence the tensile strengths of whisker [21] 
and fibre [15] are taken for Y. 

In the case of metals and polymers, at the larger ElY 
region the experimental Hv/Y values become inde- 
pendent of ElY and nearly equal to 3 as predicted by 
the rigid/plastic model (dashed-dotted line) [8]. At the 
smaller ElY region, they are remarkably close to the 
prediction for e = 1. This suggests that the plastic 
deformation in the core of metals and polymers is so 
uniform that the flat-die model would be applicable. It 
will also be justified from a different direction. Accord- 
ing to the slip-line field solution for indentation by Hill 
([8], p. 254), the plastic zone size in the rigid/plastic 
model is twice the indentation size. Equation 11 
indicates that Hv/Ybecomes almost 3 at b/Cl = 2 and 

= 1, being equal to the value of Hv/Y for rigid/ 

T A B L E  I Normalized modulus and hardness for ceramics 
(aB = tensile strength) 

Materials E Hv ~B E/a B H v/a~ 
(GPa) (GPa) (GPa) 

A1203 421" 25.5* 20.6 t 20.4 1.24 
BeO 343* 12.7" 12.7t 27.0 1.00 
B4C 480* 23.5* 13.7? 35.0 1.72 
SiC 480% 24.05 20.6t 23.3 1.17 
Si3N 4 377~ 18.5~ 13.7 ? 27.5 1.35 
Soda glass§ 68.6 5.32 3.43 20.0 1.55 

*[22], t[21l, %[31, §[151. 

plastic model. This means that the elastic/plastic 
behaviour of ductile materials would continuously 
change to the rigid/plastic one as the plastic zone size 
approaches twice the indentation size with the increase 
in Hv/Y. 

The results for ceramics seem to agree with the line 
:~ = 1/3, although the data scatter rather widely. This 
suggests that the plastic deformation in the core of 
ceramics would occur inhomogeneously as it could do 
in the expansion of completely plastic spherical shell. 
It is also justified in the following. Johnson [9] indicates 
that the lower limit of p/Y should be the value of the 
elastic limit p~ Y = 1 or Hv ~ 0.93. This relation is 
represented in Fig. 2 as the lower boundary. For such 
extremely brittle materials as ceramics, the elastic/ 
plastic solution would be intimately correlated with 
the elastic one [16, 23], and the elastic/plastic boundary 
in the present model would coincide with the boundary 
of the core (ct/b = 1) at p/Y = 1. From Equation 11, 
this yields ~ = 1/3. 

3.2. The plastic zone size 
The experimental observations for the plastic zone 
size relative to half the indentation diagonal b/c are 
compared with Equation 9 for various a-values as 
shown in Fig. 3. The theoretical plastic zone size is 
limited in the lower end by the boundary of the core 
(b = c~ = 0.8c). Most of the experimental results 
were elicited from Table I of Chiang et aL [4]; hot- 
rolled brass [24], cold-rolled steel [24], ZnS [25], KC1 
[26], AI203-ZrO2 [27] and soda lime glass [28, 29]. The 
remaining materials are quoted from the literature; 
(MnZn)Fe204 [6, 30], Si3N4 [31] and fused silica glass 
[28, 29]. Equation 9 is not strongly dependent on the 
parameter cq and as a whole shows reasonable agree- 
ment with the observed relative plastic zone sizes. 
Particularly, it seems that the curve for :~--- 1/3 
exhibits the best fitting in the lower E/Hv region. 
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Figure 3 Literature data of experimental observations on the relative 
plastic zone size against the ratio of the modulus to the hardness for 
a range of materials. Also shown are predictions in the present 
analysis for four :~-values (v = 0.25). ( I )  Hot-rolled brass, (n) 
cold-rolled steel, (e)  ZnS, ( 0 )  (MnZn)FezO4, (1) KC1, (O) Si3N4, 
(~ )  AlzO3-ZrO2, (v) Fused silica glass, (zx) soda lime glass. 
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Figure 4 Plot of the function g in Equation 20 against G/q as a 
function of b/cl (v = 0.25). 

Chiang et al. [4] calculated the elastic/plastic stress 
field from Equations 12 and 13 by replacing Johnson's 
incompressible core by an equivalent cavity, the volume 
of  which is equal to the Vickes indentation volume. 
Thus the radius of  the equivalent cavity, c', is equal to 
0.45c. Modifying the pressure and yield stress to 
account for the pressure of a free surface, they insist 
that their analysis coincides with the experimental 
results on the contact pressure and the relative plastic 
zone size. However, the concept in their model had 
some confusion in the definition of hardness. As 
described in their companion work [5], hardness is 
defined in terms of  the projected area; Hv = P/2e 2. 
They give an upper bound of  the peak load stress field 
the hemispherical cavity solution relating the load to 
the indentation radius by P = prcc '2. Hence, accord- 
ing to their definition, Hv = prcc'2/2c 2 ~ 0.32p. They 
compare p directly with the experimental data as in 
their Fig. 1 [4]. This means that the comparison 
involves an error of  a factor of three in the evaluation 
of hardness, and the modification by the free surface 
effect makes the error slightly larger. 

It is noted that as the plastic zone size becomes 
comparable with the indentation size with the decrease 
in E/H,, the prediction of the inclusion core model in 
the present work differs markedly from that of John- 
son's incompressible core model [9] or the spherical 
cavity model [2, 4]. On the basis of  the analysis of  
Lawn et al. [2], Chiang et al. [4] assumes the applica- 
bility of the one-half power dependency of b/c on E/Hv 
in the whole range of E/Hv. However, it is evident 
from Fig. 3 that the one-half power dependency may 
be a good approximation at high E/Hv values, while 
the dependency deviates to a much steeper one as E/Hv 
approaches the lower end. 

3.3. The stress intensi ty factor 
The stress intensity factor for well-developed cracks in 
the present model varies with the crack-opening 
location cx. Fig. 4 represents the parameter g(G/c~, 
b/ct) in Equation 20 against Cx/Ct as a function of b/ct. 
The analytical result indicates that the stress intensity 
factor K becomes maximum at the boundary of the 
core (G/q = 1) at the relatively small zone size 
(b/q < 1.4), while the maximized position moves to a 
location between the core and plastic zone boundary 
at the higher b/q values. It is probable that the equi- 
librium growth of  the cracks occurs when the resulting 
maximum stress intensity factor K attains to the 
toughness Kc. Hence from the maximum values thus 
obtained, the correlation factors K/(P/a 3/2) are com- 
puted for various a-values using Equation 20, and 
plotted in Fig. 5 against the ratio of elastic modulus to 
yield stress. These curves are limited in the lower E/Hv 
region by the condition expressed in Equation 10. For  
reference, the correlation factor appropriate to the 
infinite body in the neglect of the free surface is cal- 
culated from Equation 18 for ~ = 0, and plotted in 
the same figure. In this case the stress intensity factor 
is maximized at c~ = b. The comparison of the curve 
derived from Equation 20 for = = 0 with that from 
Equation 18 shows that the effect of a free surface 
reduces the correlation factor by about 50%. 

Figure 5 demonstrates that, with the increase in the 
value of parameter ~, the correlation factors derived 
from Equation 20 decrease, while the dependency on 

0.2 2 
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Figure 5 Correlation of experiments on normalized 
fracture toughness against the ratio of the modulus to 
the hardness for a range of materials, Also shown are 
the theoretical predictions from the present analysis 
(v = 0.25), and the empirical relations from Tanaka [7] 
and Antis et al. [3]. (O) Si3N4, ( 0 )  SiC, ( , ~ )  A1203, (v) 
glass-ceramic, (zx) glass, (A) Si, (0) (MnZn)Fe204, (11) 
WC/Co. 
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E/Hv tends to increase. In particular, for the case 
where e = 0, the correlation factor is almost indepen- 
dent of E/Hv. These theoretical results are compared 
with the experimental ones evaluated by the ratio of 
toughness values determined by the conventional 
methods to P/a 3/2 values obtained by indentation, for 
various materials. Detailed information of most of the 
data from the literature is tabulated in Tanaka [7]. The 
newly quoted data in the present work are for WC/Co 
alloys [32] and A1203 [12]. The theoretical curves show 
reasonable agreement with the general trend of the 
observed correlation factors, where the dependency 
on modulus-to-hardness appears very weak. Although 
the data scatter of experiments is large, it seems that 
the best fitting curve is the case of ~ = 1/3, as also 
coincident with the results on the hardness in Fig. 2 
and the plastic zone size in Fig. 3. The curve may be 
approximated by the straight dash-dotted line, which 
is expressed by 

Kc = 0.035 (E/nv)'/4(e/a3/2). (21) 

Tanaka [7] examined the correlation between the 
indentation-determined and conventional toughness 
available in the literature and concluded that Kc can be 
approximated independently of E/Hv with an accuracy 
within the data scatter as 

K~ = O.0725(P/a3/2). (22) 

Lewis et al. [30] investigated the fracture of Si3N4 
ceramic alloys and also gave the same relationship 
with the appropriate constant of 0.073. Using the 
theoretical analysis proposed by Lawn et al. [2], Antis 
et al. [3] proposed that the correlation factor should 
depend on E/Hv to the one-half power, and then deter- 
mined the "calibration" constant comparing the 
indentation-determined toughness values with the 
conventional ones: 

Kc = O.O16(E/Hv)'/2(p/a 3/2) (23) 

It is evident from the curve derived from Equation 18 
that the one-half power dependency may be correct 
for an infinite body in the region with the E/Hv value 
higher than about 30. As seen in Fig. 5, Equation 21 
lies between Equations 22 and 23 for the usual cer- 
amics. This indicates that the present analysis gives a 
theoretical basis for these semi-empirical correlations. 

4. Conclusion 
Elastic/plastic indentation has been calculated by 
allowing the indentation pressure to be transmitted 
via a misfitted inclusion core beneath the indenter. 
This core is compressible and replaces the incompress- 
ible core in Johnson's model. The elastic field 
produced by the indentation has been evaluated by 
combining Eshelby's spherical inclusion problem and 
Hill's spherical-cavity expansion analysis. The plastic 
deformation inside and outside the inclusion core 
ensures the compatibility between the volume of a 
material displaced by the indenter and that accom- 
modated by expansion. It is assumed that the applied 
load is balanced with the internal stress field in addition 
to the stress, c~Y, required for the plastic work dis- 
sipated in the core. The analysis indicates that essential 

relationships between the indentation plasticity and 
the dominant material properties: yield stress, hardness, 
elastic modulus, and Poisson's ratio. Predictions of 
the hardness/yield stress ratio with the elastic modulus/ 
yield stress ratio have been shown to correlate with the 
experimental results for metal and polymers by ~ = 1 
and ceramics by ~ = 1/3. Similarly, predictions of the 
plastic-zone dimension in terms of the hardness and 
elastic modulus agree well with experimental obser- 
vations for a wide range of materials. 

The solution has been used to evaluate the inden- 
tation fracture toughness, accounting for the image 
force contribution from the presence of the free surface. 
Predictions of the correlation factor K/(P/a 3/2) with 
the elastic modulus/hardness ratio correspond the 
most closely to the trends demonstrated by the avail- 
able experimental data when c~ = 1/3. 
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Appendix 1. Evaluation of indentation 
volume change 

Let us consider a case of an expanding spherical cavity 
with its internal radius of cl under internal pressure P2 
in an infinite medium. The stresses and displacements 
in the elastic/plastic region outside the cavity are taken 
from Hill [8], whence the current total internal radius 
of the cavity c~ + u is given by 

(c, + u)3/c~ = 1 + 3(1 - v)Yb3/Ec~ 

- 3(1 - 2v)p2/E (A1) 

([8], p. 101, Equation 14). If  the cavity is stressed 
elastically (reversibly) under the same pressure, the 
radial displacement of the internal radius of the cavity 
ue will be given by 

U e = p2(1 + V)Cl/2E (A2) 

([8], p. 98, Equation 2). Under the condition that the 
radial displacements u and ue are negligibly small com- 
pared to the initial radius c~, the irreversible (plastic) 
volume change of the cavity A V 2 is evaluated from 
Equations A1 and A2 as 

AV2 = 4rc(u - / A e ) C  2 = 4~(1 - v)yb3/E 

- 6re(1 - v)p2c~/E. (A3) 

Dividing both sides of Equations A3 by 4rcc~/3, we can 
obtain the relation in Equation 2. 

Appendix 2. Stress analysis for the 
surface stresses 

On the assumption of the spherical inclusion, the 
internal stresses becomes axisymmetric. Hence, the 
case where a uniform traction ~rt(Q) is distributed over 
the area on a free surface x3 = 0 between the radii 0 
and 0 + d0 (Fig. A1) is considered. The stress 
o'22(r, q~, 0) at a point (xl, 0, x3) is calculated by the 
superposition of Mindlin's solution [13, 14] for a con- 
centrated force at(o)ododO applied at a point (0 cos 0, 
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Figure AI  Coordinate system used for stress analysis. 

0 sin 0, 0) in the positive x3 direction as 

20~ o'22(r, ~ ,  Q) = od0 o'=(r, q), 0, 0) dO (A4) 

where 

a22( r, q~, 0, 0) = - [at(O)/2r~]{(1 - 2v)[Q 2 sin 2 0 

- -  ( R  l - -  Q COS O)2]/R 4 - (1 - 2v)x3[02 s i n 2 0  

- ( R  I - Q c o s  O)2]/R4(R 2 4- x~) 1/2 

- 3x3Q 2 sin 20/(R 2 4- x~) 5/z 

+ (1 - 2 v ) x 3 ( R l  - Q c o s  0 ) 2 / R 2 ( R  2 + x b ' / 2 } .  

Here r = (x~ + x~) ~/2, R = ( 0 2 -  2R~0cos0  + 
R~) 1/2 and R1 = rsin~b, x3 = rcos~b. The stress 
~22(r,  Q) at a radial location r from the crack centre 
averaged over the angular range is determined by 

= (1/re) f2 a=(r, ~b, Q)d~b. (A5) 522(r,  Q) 

The analytical solution for Equation A5 is extremely 
complicated, and thus Equation A5 is numerically 
integrated for the case where v = 0.25. The result is 
given in a form, 

o-22(r , ~o) = - -  [f f t (~)d~/rcQ]f(r /o)  ( A 6 )  

The function f ( r /o)  is indicated by a solid curve in 
Fig. A2 against r/o. The approximate analytic solution 
for f (r /o)  is obtained by a polynominal, 

f(r/Q) = u,(r/e ) 4- u3(r/o) 3 4- us(r/oL) s, rio <= 1 

-! 

- 2  

- 3  
Q. -¢ 

v -5 

- 6  

-7 

r/o 
2 
i 

/ 

with 

uj = - 5 / 2 ,  u 3 = 51/16, us = -153 /64  

f(r/o) = v 3 ( 0 / r )  3 4- 'u4(O/r )  4 4- v 5 ( o / r )  5 4- 7J6(Q/r) 6 

+ v7(o/r) 7, r/o > 1 (A7) 

with 

'0 3 - 1 ,  v 4 = - 2 . 5 , ' v  s = - 0 . 5 ,  '06 = 6, 

v 7 = - 6 . 6  

This is given by the dotted curves in Fig. A2. The 
approximate solution agrees well with the numerical 
solution except in th case where r/o approaches very 
closely to one. Integration of  Equation A6 after the 
substitution of  -~33 (Q) into a t (Q) yields Equation 19. 
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